Lecture 17

Web Security

Mr. Mubashir Ali
Lecturer (Dept. of Computer Science)
dr.mubashirali1@gmail.com
Outline

• Web security overview
• Secure transmission of data
• User’s security issues
• Service provider’s issues
1. Web security

• Web client **expect** web applications to be secure
 – **preventing** access from untrusted or malicious sources to private data
 – service providers do not **misuse** their data
 • by **exchanging** data with third party
1. Web security...

• Several **risks** exist for service providers as well
 – **prevent** access from attackers
 • credit card number can be **stolen**
 • data can be **accessed and modified**
 – **availability** of service can be reduced

• can influence agreements and cause financial lose
We can define security according to notions of users and service providers as

- securing the end user’s computer and personal data stored on it
- securing information in transit
- securing the server and data stored on it
1. Web security...

- Desktop security
- Security of personal data
- Network security
- Secure communication
- Security of the host
- Service availability

Client ▶️ Request ▶️ Response ▶️ Service provider

Mubashir Ali - Lecturer (Department of Computer Science).
1. Web security...

• Security aspects

• Confidentiality:
 – means communication between a customer and a provider cannot be read by a third party
 • data encryption can be used

• Integrity:
 – nobody is able to modify the exchanged information
1. Web security...

- Security aspects
- Non-repudiation:
 - originators of messages should not be able to deny
 - customers ordering books at an online store
- Authentication:
 - the process of verifying the identity of a person or general subject such as another application invoking a service on behalf of a human user
 - usually implemented by login/password mechanism
1. Web security...

- Security aspects
- Authorization
 - is used to infer which privileges authenticated users are granted
- Availability
 - guaranteeing the availability of Web applications
 - service downtime typically implies financial losses
1. Web security...

- Security aspects
- Privacy
 - privacy demands the **reliable handling** of data
2. Data encryption

• Encryption is a basic technology for enabling secure messaging

• Encryption:
 – translation of data into a format that is intended to be unreadable by anyone except the intended party
 – changing the original text to a secret message using mathematical function
 • one-way encryption
 • two-way encryption
2. Data encryption...

• Decryption:
 – changing the secret message back to its original form
2. Data encryption...

- Encryption/decryption process:

 Confidential message: Hello

 Plain text

 Encryption algorithm

 Cipher text: ASD12#TY

 Decryption algorithm

 Confidential message: Hello

 Plain text

 Cipher text: ASD12#TY

 Transmitted to the user
2. Data encryption...

• Used by **Julius Caesar**

• Caesar shifted each letter of his messages to his generals **three places down** in the alphabet

• So **BURN THE BRIDGE** becomes

• **EXUQ WKH EUKFIG**
2. Data encryption...

- Cryptographic algorithms:
 - Rely on keys as secret term for ciphering and deciphering
 - Without key it is computationally impossible to break an algorithm
 - An algorithm is considered strong if brute force attack is the only possible attack
2. Data encryption...

• Symmetric cryptography:
• Two-way encryption
• Use the **same single** key to encrypt and decrypt a message
• Also called **private key** cryptography
 – DES and AES are examples of symmetric cryptographic algorithms
2. Data encryption...

• Symmetric cryptography:

<table>
<thead>
<tr>
<th>Plain text</th>
<th>Encryption algorithm</th>
<th>Cipher text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confidential message</td>
<td>Hello</td>
<td>ASD12#TY</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plain text</th>
<th>Decryption algorithm</th>
<th>Cipher text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confidential message</td>
<td>Hello</td>
<td>ASD12#TY</td>
</tr>
</tbody>
</table>

Key 12345

Transmitted to the user

Mubashir Ali - Lecturer (Department of Computer Science).
2. Data encryption...

• Asymmetric cryptography:
• Also known as **public key** cryptography
• Uses **two keys** instead of one
 – The **public key** is known to everyone and can be freely distributed
 – The **private key** is known only to the recipient of the message
• RSA is an example of asymmetric cryptography
2. Data encryption...

- **Asymmetric cryptography**:

 - **Plain text**: Confidential message
 - **Encryption algorithm**: Cipher text
 - **Cipher text**: Transmitted to the user
 - **Decryption algorithm**: Plain text

 Confidential message: Hello
 Receiver's public Key: ASD12#TY
 Receiver's private Key: ASD12#TY
2. Data encryption...

- Hashing algorithms:
 - Hashing is a one-way process
 - converting a hash back to the original data is difficult or impossible
- A hash is a unique “signature” for a set of data
 - this signature, called a hash or digest, represents the contents
2. Data encryption...

• Digital signatures:

• A digital signature is basically a way to ensure that an electronic document is authentic
 – Integrity
 – Non repudiation
2. Data encryption...

- Digital signatures creation:
 - sender creates a hash of the message
 - sender encrypts the message with his/her private key
 - attach the digital signature with message
2. Data encryption...

• Digital signatures validation:
 • Receiver decrypts the signature with sender’s public key
 • Receiver creates the hash of the message
 • Created hash is compared with the decrypted message
2. Data encryption...

Message (m) → Create hash h(m) → Encrypt hash with private key \(\text{sig}(m) \) → Attach signature with message

- **Message is verified**: Yes
 - \(h(m) = \text{sig}(m) \)
 - Transmit message + signature

- **Message is altered**
 - \(h(m) \neq \text{sig}(m) \)
 - Decrypt signature \(\text{sig}(m) \)

3. Data encryption....

- Cryptography ensures
 - Confidentiality
 - Integrity
 - Availability
 - Authenticity
 - Non-repudiation
3. Securing user’s data

- After securely transmitting data user wants
- Privacy
 - providers keep data carefully
 - protect data from attackers
- Secured desktop
3. Securing user’s data...

- Service providers need to establish trust relationship
 - can specify data practices using platform for Privacy Preferences (P3P) standard
- User can specify its preferences using P3P-agent
- P3P-capable browsers inform the user if service provider’s policies conflict with user’s preferences
3. Securing user’s data...

- Phishing and Web Spoofing
- **Phishing** is the most common attack to retrieve user’s personal information
- Web spoofing denotes **mocking** the web presence of famous companies
 - **send email** to users as representative of some well known company
 - **encourage** the user’s to enter their personal information
3. Securing user’s data...

- Securing the desktop
- users’ security can be at-risk through threats like viruses and worms
 – it is user’s responsibility to tackle with them
3. Securing user’s data...

- **Adware and spyware**
 - adware deliver **advertising contents**
 - spyware **monitor** users activities and transfer gathered information to remote systems

- **Remote access/backdoors**

- **provide remote systems the ability to connect** with user’s machine
 - can **obtain** personal information, damage files and control user’s machine
3. Securing user’s data...

- Viruses
- can **damage** files or **repeat** themselves
 - distributed through email or by sharing infected files
- Worms
- Repeat themselves
 - **increase** traffic and **consume** processing power
3. Securing user’s data...

- Trojan horses
- Damage files but don’t replicate
- Appears as useful programs but performs other functionalities
 - aims at data theft and destruction or illegitimate access on computational resources
4. Service providers issues

• Service provider wants to **secure** the server from **attackers**

• Common attacks:

• Cross-site scripting (XSS)

• Attackers **inject script** in dynamically created pages and try to find user’s information

• SQL-injection

• Attackers **inject sql** commands as an input
Summary

• Web security overview
• Secure transmission of data
• User’s security issues
• Service provider’s issues